翻訳と辞書
Words near each other
・ Itsuka dokusho suruhi
・ Itsuka Hanareru Hi ga Kite mo
・ Itsuka Kitto...
・ Itsuka, Sakura no Ame ni...
・ Itsukaichi Line
・ Itsukaichi Station
・ Itsukaichi, Tokyo
・ Itsukamachi Station
・ Itsuki
・ Itsuki Gokanoshō Prefectural Natural Park
・ Itsuki Lullaby
・ Itsuki Shoda
・ Itsuki Toyama
・ Itsuki Yamada
・ Itogon, Benguet
Itoh-Tsujii inversion algorithm
・ Itohan Ebireguesele
・ Itohkyuemon
・ Itoi
・ Itoi (Hitui)
・ Itoi Shigesato no Bass Tsuri No. 1
・ Itoi Station
・ Itoigawa Station
・ Itoigawa, Niigata
・ Itoigawa-Shizuoka Tectonic Line
・ Itoiz
・ Itoizawa Station
・ Itojo Hospital
・ Itokawa
・ Itokazu Castle


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Itoh-Tsujii inversion algorithm : ウィキペディア英語版
Itoh-Tsujii inversion algorithm
The Itoh-Tsujii inversion algorithm is used to invert elements in a finite field. It was introduced in 1988 and first used over GF(2''m'') using the normal basis representation of elements, however the algorithm is generic and can be used for other bases, such as the polynomial basis. It can also be used in any finite field, GF(''p''''m'').
The algorithm is as follows:
:Input: ''A'' ∈ GF(''p''''m'')
:Output: ''A''−1
:#''r'' ← (''p''''m'' − 1)/(''p'' − 1)
:#compute ''A''''r'' − 1 in GF(''p''''m'')
:#compute ''A''''r'' = ''A''''r'' − 1 · ''A''
:#compute (''A''''r'')−1 in GF(''p'')
:#compute ''A''−1 = (''A''''r'')−1 · ''A''''r'' −1
:#return ''A''−1
This algorithm is fast because steps 3 and 5 both involve operations in the subfield GF(''p''). Similarly, if a small value of ''p'' is used a lookup table can be used for inversion in step 4. The majority of time spent in this algorithm is in step 2, the first exponentiation. This is one reason why this algorithm is well-suited for the normal basis, since squaring and exponentiation are relatively easy in that basis.
==References==

*T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in GF(2''m'') Using Normal Bases. ''Information and Computation'', 78:171-177, 1988.
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.